Add like
Add dislike
Add to saved papers

By up-regulating μ- and δ-opioid receptors, neuron-restrictive silencer factor knockdown promotes neurological recovery after ischemia.

Oncotarget 2017 May 24
We investigated the effects of neuron-restrictive silencer factor (NRSF) on proliferation of endogenous nerve stem cells (NSCs) and on μ- and δ-opioid receptor (MOR/DOR) expression in rats after cerebral ischemia. Among 100 rats subjected to cerebral ischemia, 20 rats were transfected with NRSF shRNA, and the remaining 80 were randomly assigned to normal, sham, model, and negative control (NC) groups. On days 7, 14, and 28 after ischemia and reperfusion, neurological function scores were assigned and a step-down passive avoidance test was conducted. Nerve function scores, step-down reaction periods, error times and apoptosis rates, as well as levels of B-cell CLL/lymphoma 2 (Bcl-2), BCL2-associated X protein (Bax), and NRSF expression were lower in the NRSF shRNA group than in the model and NC groups. By contrast, step-down latency, numbers of bromodeoxyuridine-positive cells, MOR/DOR expression, and phosphorylation of extracellular signal regulated protein kinase (ERK) and cAMP response element binding protein (CREB) were higher in the NRSF shRNA group than in the model and NC groups. These results suggest that by up-regulating MOR/DOR expression, NRSF knockdown accelerates recovery of neurological function after cerebral ischemia, at least in part by promoting NSC proliferation and inhibiting apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app