Add like
Add dislike
Add to saved papers

Quantifying fermionic decoherence in many-body systems.

Practical measures of electronic decoherence, called distilled purities, that are applicable to many-body systems are introduced. While usual measures of electronic decoherence such as the purity employ the full N-particle density matrix which is generally unavailable, the distilled purities are based on the r-body reduced density matrices (r-RDMs) which are more accessible quantities. The r-body distilled purities are derivative quantities of the previously introduced r-body reduced purities [I. Franco and H. Appel, J. Chem. Phys. 139, 094109 (2013)] that measure the non-idempotency of the r-RDMs. Specifically, the distilled purities exploit the structure of the reduced purities to extract coherences between Slater determinants with integer occupations defined by a given single-particle basis that compose an electronic state. In this way, the distilled purities offer a practical platform to quantify coherences in a given basis that can be used to analyze the quantum dynamics of many-electron systems. Exact expressions for the one-body and two-body distilled purities are presented and the utility of the approach is exemplified via an analysis of the dynamics of oligo-acetylene as described by the Su-Schrieffer-Heeger Hamiltonian. Last, the advantages and limitations of the purity, reduced purity, and distilled purity as measures of electronic coherence are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app