Add like
Add dislike
Add to saved papers

Surprising behaviors in the temperature dependent kinetics of diatomic interhalogens with anions and cations.

Rate constants and product branching fractions of reactions between diatomic interhalogens (ICl, ClF) and a series of anions (Br- , I- ) and cations (Ar+ , N2 + ) are measured using a selected ion flow tube apparatus and reported over the temperature range 200-500 K. The efficiency of both anion reactions with ICl is 2%-3% at 300 K to yield Cl- , increasing with temperature in a manner consistent with the small endothermicities of the reactions. The anion reactions with ClF are 10%-20% efficient at 300 K to yield Cl- and also show a positive temperature dependence despite being highly exothermic. The stationary points along the anion + ClF reaction coordinates were calculated using density functional theory, showing no endothermic barriers inhibiting reaction. The observed temperature dependence can be rationalized by a decreasing dipole attraction with increasing rotational energy, but confirmation requires trajectory calculations of the systems. All four cation reactions are fairly efficient at 300 K with small positive temperature dependences, despite large exothermicities to charge transfer. Three of the four reactions proceed exclusively by dissociative charge transfer to yield Cl+ . The N2 + + ClF reaction proceeds by both non-dissociative and dissociative charge transfer, with the non-dissociative channel surprisingly increasing with increasing temperature. The origins of these behaviors are not clear and are discussed within the framework of charge-transfer reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app