Add like
Add dislike
Add to saved papers

Adsorption and photocatalysis efficiency of magnetite quantum dots anchored tin dioxide nanofibers for removal of mutagenic compound: Toxicity evaluation and antibacterial activity.

The Magnetite Fe3O4 quantum dots anchored SnO2 nanofibers (Fe3O4 QDs/SnO2 NFs) have been synthesized using the facile one step hydrothermal method. The characteristic structure of synthesized Fe3O4 QDs/SnO2 NFs was analyzed using X-ray diffraction, Transmission electron Microscopy, Scanning electron microscopy, UV-vis diffuse reflectance, photoluminescence spectroscopy, and N2 adsorption-desorption instrumental techniques. The crystallites size of Fe3O4QDs/SnO2 NFs was 7.0nm. The average diameters of Fe3O4QDs/SnO2 NFs were 7.25nm. BET surface area of Fe3O4QDs/SnO2 NFs has been found 53.064m(2)/g. The activity of Fe3O4 QDs/SnO2 NFs samples were compared towards adsorption and degradation of mutagenic compound such as Ethyl methanesulfonate (EMS). The Fe3O4 QDs/SnO2 NFs demonstrates 93.85% and 56.85% photo degradation and adsorption activity towards 10ppm EMS solution in 30 and 40min, respectively. Fe3O4 QDs/SnO2 NFs shows maximum removal of EMS at pH5. Additionally, cytotoxicity test showed that the newly developed catalyst has low cytotoxic effects on three kinds of human cells. The antibacterial activity evaluation against two bacterials, including Staphylococcus aureus (ATCC 43300), and Pseudomonas aeruginosa (ATCC 27853) was considered. It was found that the MIC values for the antibacterial assay in the presence of Fe3O4 QDs/SnO2 NFs were around 0.38mM with 83.4, and 85.5% inhibition for the S. aureus, and P. aeruginosa bacterial strains, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app