Add like
Add dislike
Add to saved papers

Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils.

With the phaseout of perfluorooctane sulfonate (PFOS) production in most countries and its well known recalcitrance, there is a need to quantify the potential release of PFOS from precursors previously or currently being emitted into the environment. Aerobic biodegradation of N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was monitored in two soils from Indiana, USA: an acidic forest silt loam (FRST-48, pH = 5.5) and a high pH agricultural loam (PSF-49, pH = 7.8) with similar organic carbon contents (2.4 and 2.6%) for 210 d and 180 d, respectively. At designated times, triplicate samples were sacrificed for which headspace samples were taken followed by three sequential extractions. Extracts were analyzed using HPLC-tandem mass spectrometry. Measured profiles of EtFOSE degradation and generation/degradation of subsequent metabolites were fitted to the Indiana soils data as well as to a previously published data set for a Canadian soil using an R-based model (KinGUII) to explore pathways and estimate half-lives (t1/2 ) for EtFOSE and metabolites. EtFOSE degradation ranged from a few days to up to a month. PFOS yields ranged form 1.06-5.49 mol% with the alkaline soils being four to five times higher than the acidic soil. In addition, a direct pathway to PFOS had to be invoked to describe the early generation of PFOS in the Canadian soil. Of all metabolites, the sulfonamidoacetic acids were the most persistent (t1/2  ≥ 3 months) in all soils. We hypothesized that while pH-pKa dependent speciation may have impacted rates, differences in microbial communities between the 3 soils arising from varied soil properties including pH, nutrient levels, soil management, and climatic regions are likely the major factors affecting pathways, rates, and PFOS yields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app