Add like
Add dislike
Add to saved papers

Defect Chemistry, Electrical Properties, and Evaluation of New Oxides Sr2 CoNb1-x Tix O6-δ (0≤x≤1) as Cathode Materials for Solid Oxide Fuel Cells.

ChemSusChem 2017 July 22
The perovskite series Sr2 CoNb1-x Tix O6-δ (0≤x≤1) was investigated in the full compositional range to assess its potential as cathode material for solid oxide fuel cell (SOFC). The variation of transport properties and thus, the area specific resistances (ASR) are explained by a detailed investigation of the defect chemistry. Increasing the titanium content from x=0-1 produces both oxidation of Co(3+) to Co(4+) (from 0 up to 40 %) and oxygen vacancies (from 6.0 to 5.7 oxygen atom/formula unit), although each charge compensation mechanism predominates in different compositional ranges. Neutron diffraction reveals that samples with high Ti-contents lose a significant amount of oxygen upon heating above 600 K. Oxygen is partially recovered upon cooling as the oxygen release and uptake show noticeably different kinetics. The complex defect chemistry of these compounds, together with the compositional changes upon heating/cooling cycles and atmospheres, produce a complicated behavior of electrical conductivity. Cathodes containing Sr2 CoTiO6-δ display low ASR values, 0,13 Ω cm(2) at 973 K, comparable to those of the best compounds reported so far, being a very promising cathode material for SOFC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app