Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio).

The incidence of microplastics in marine environments has been increasing over the past several decades. The objective of the present study was to characterize the size- and shape-dependent effects of microplastic particles (spheres, fibers, and fragments) on the adult daggerblade grass shrimp (Palaemonetes pugio). Grass shrimp were exposed to 11 sizes of plastic: spheres (30, 35, 59, 75, 83, 116, and 165 μm), fragments (34 and 93 μm), and fibers (34 and 93 μm) at a concentration of 2000 particles/400 mL (= 50 000 particles/L) for 3 h. Following exposure, grass shrimp were monitored for survival, ingested and ventilated microplastics, and residence time. Mortality ranged from 0% to 55%. Spheres and fragments <50 μm were not acutely toxic. Mortality rates in experiments with spheres and fragments >50 μm ranged from 5% to 40%. Mortality was significantly higher in the exposure to 93-μm fibers than other sizes tested (p < 0.001). The shape of the particle had a significant influence on the number of particles ingested by the shrimp (p < 0.001). The residence time of particles in the gut ranged from 27 to 75 h, with an average of 43.0 ± 13.8 h. Within the gills, the residence time ranged from 27 to 45 h, with an average of 36.9 ± 5.4 h. The results suggest that microplastic particles of various sizes and shapes can be ingested and ventilated by adult daggerblade grass shrimp, resulting in acute toxicity. Environ Toxicol Chem 2017;36:3074-3080. © 2017 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app