Add like
Add dislike
Add to saved papers

The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene.

Graphene is emerging as a versatile material with a diverse field of applications. Synthesis techniques for graphene introduce several topological defects such as vacancies, dislocations and Stone-Thrower-Wales (STW) defects. Among them STW defects are generated without deleting any atom from the lattice position, but are introduced by rotating single C-C bonds. In this article, molecular dynamics based simulations have been performed to study the effect of STW defects on the fracture toughness of pristine graphene as well as graphene with crack edges passivated with hydrogen atoms. STW defects help in generating out of plane displacement in conjunction with redistribution of stress around the crack edges that can be used to improve the fracture toughness of brittle graphene. An overall improvement in the fracture toughness of pristine graphene as well as graphene containing hydrogen at the crack edges was predicted in this work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app