Add like
Add dislike
Add to saved papers

Vascular calcification: the role of microRNAs.

Biomolecular Concepts 2017 April 21
Vascular calcification represents the deposition of calcium phosphate salts in the tunica media of the vascular wall. It occurs during aging but is accelerated and pronounced in patients with diabetes mellitus, chronic kidney disease (CKD) and established cardiovascular disease. Due to the loss of elasticity of the vessel wall, vascular calcification might result in left ventricular hypertrophy and compromise coronary perfusion. Accordingly, several studies showed that vascular calcification is associated with increased risk for cardiovascular morbidity and mortality. Accumulating data suggest that microRNAs (miRs) play an important role in vascular calcification. A variety of miRs have been implicated in the development of vascular calcification, whereas others appear to play a protective role. Accordingly, miRs might represent promising targets for the prevention of vascular calcification and its adverse cardiovascular sequelae. However, given the complexity of regulation of this process and the multitude of miRs involved, more research is needed to identify the optimal candidate miRs for targeting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app