Add like
Add dislike
Add to saved papers

ox-LDL increases microRNA-29a transcription through upregulating YY1 and STAT1 in macrophages.

Macrophages and oxidized low-density lipoprotein (ox-LDL) have been verified playing vital roles in the pathogenesis of atherosclerosis (AS). Previous studies demonstrated that microRNA-29a (miR-29a) was upregulated in many atherogenic process and cells, thus acting as an important participant in AS. But the detailed regulation mechanism of miR-29a in AS has not been fully understood. In our study, we demonstrated a positive feedback loop of ox-LDL-SRA-miR-29a. Furthermore, we found that YY1 and STAT1 were upregulated in ox-LDL-stimulating macrophages followed by translocation in the nucleus and binding to the transcriptional promoter region of miR-29a, thus leading to the increase of miR-29a expression. In addition, we demonstrated that JAK1/2 signaling was involved in miR-29a upregulation. Finally, we found that miR-29a played important roles in the secretion of proinflammation factors and lipid uptake in macrophages. We uncovered the molecular mechanism and provide novel insights into the function and regulatory network of miR-29a expression regulated by ox-LDL in macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app