Add like
Add dislike
Add to saved papers

A stochastic algorithm for automatic hand pose and motion estimation.

In this paper, a novel, robust, and simple method for automatically estimating the hand pose is proposed and validated. The method uses a multi-camera optoelectronic system and a model-based stochastic algorithm. The approach is marker-based and relies on an Unscented Kalman Filter. A hand kinematic model is introduced for constraining relative marker's positions and improving the algorithm robustness with respect to outliers and possible occlusions. The algorithm outputs are 3D coordinate measures of markers and hand joint angle values. To validate the proposed algorithm, a comparison with ground truths for angular and 3D coordinate measures is carried out. The comparative analysis shows the advantages of using the model-based stochastic algorithm with respect to standard processing software of optoelectronic cameras in terms of implementation simplicity, time consumption, and user effort. The accuracy is remarkable, with a difference of maximum 0.035r a d and 4m m with respect to angular and 3D Cartesian coordinates ground truths, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app