Add like
Add dislike
Add to saved papers

An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation, and its application on interaction study between LpNOL and LpNYC1.

BACKGROUND: Perennial ryegrass (Lolium perenne L.) is an important temperate grass used for turf and forage purposes. With the increasing accumulation of genomic and transcriptomic data of perennial ryegrass, an efficient protoplast and transient gene expression protocol is highly desirable for in vivo gene functional studies in its homologous system.

RESULTS: In this report, a highly efficient protoplast isolation (5.6 × 10(7) protoplasts per gram of leaf material) and transient expression (plasmid transformation efficiency at 55.2%) was developed and the detailed protocol presented. Using this protocol, the subcellular locations of two ryegrass proteins were visualized in chloroplasts and nuclei, respectively, and protein-protein interaction between two chlorophyll catabolic enzymes (LpNOL and LpNYC1) was recorded in its homologous system for the first time.

CONCLUSION: This efficient protoplast isolation and transformation protocol is sufficient for studies on protein subcellular localization and protein-protein interaction, and shall be suitable for many other molecular biology applications where the mesophyll protoplast system is desirable in perennial ryegrass.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app