Add like
Add dislike
Add to saved papers

Low-dose glucocorticoids suppresses ovarian tumor growth and metastasis in an immunocompetent syngeneic mouse model.

Ovarian cancer has the highest mortality rate among gynecologic malignancies. Despite chemotherapy and surgical debulking options, ovarian cancer recurs and disseminates frequently with a poor prognosis. We previously reported a novel role of glucocorticoids (GCs) in metastatic ovarian cancer by upregulating microRNA-708. In this study, we used an immunocompetent syngeneic mouse model and further evaluated the effect and optimal dosages of GCs in treating metastatic ovarian cancer. The treatment of C57BL/6-derived ovarian cancer ID-8 cells with a synthetic GC, dexamethasone (DEX), induced the expression of microRNA-708, leading to decreased cell migration and invasion through targeting Rap1B. Administration of DEX at a low dose, as low as 5 μg/kg body weight, inhibited the primary tumor size and abdominal metastasis in mice bearing ID-8 cell-derived ovarian tumors. In the treated primary tumors, microRNA-708 was upregulated, whereas some proinflammatory cytokines, namely interleukin (IL)-1β and IL-18, were downregulated. The number of tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment were reduced. Overall, our study shows that low-dose GCs can suppress ovarian cancer progression and metastasis likely through not only the upregulation of the metastasis suppressor microRNA-708, but also the modulation of TAMs and MDSCs in the tumor microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app