Add like
Add dislike
Add to saved papers

Enhanced Immune Adjuvant Activity of Aluminum Oxyhydroxide Nanorods through Cationic Surface Functionalization.

Aluminum-salt-based vaccine adjuvants are prevailingly used in FDA-approved vaccines for the prevention of infectious diseases for over eighty years. Despite their safe applications, the mechanisms regarding how the material characteristics affect the interactions at nano-bio interface and immunogenicity remain unclear. Recently, studies have indicated that the activation of NLRP3 inflammasome plays a critical role in inducing adjuvant effects that are controlled by the inherent shape and hydroxyl contents of aluminum oxyhydroxide (AlOOH) nanoparticles; however, the detailed relationship between surface properties and adjuvant effects for these materials remains unknown. Thus, we engineered AlOOH nanorods (ALNRs) with controlled surface functionalization and charge to assess their effects on the activation of NLRP3 inflammasome in vitro and the potentiation of immunogenicity in vivo. It is demonstrated that NH2 -functionalized ALNRs exhibited higher levels of cellular uptake, lysosomal damage, oxidative stress, and NLRP3 inflammasome activation than pristine and SO3 H-functionalized ALNRs in cells. This structure-activity relationship also correlates with the adjuvant activity of the material using ovalbumin (OVA) in a mouse vaccination model. This study demonstrates that surface functionalization of ALNRs is critical for rational design of aluminum-based adjuvants to boost antigen-specific immune responses for more effective and long-lasting vaccination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app