Add like
Add dislike
Add to saved papers

Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering.

Advanced Materials 2017 August
High-entropy alloys (HEAs) in which interesting physical, chemical, and structural properties are being continuously revealed have recently attracted extensive attention. Body-centered cubic (bcc) HEAs, particularly those based on refractory elements are promising for high-temperature application but generally fail by early cracking with limited plasticity at room temperature, which limits their malleability and widespread uses. Here, the "metastability-engineering" strategy is exploited in brittle bcc HEAs via tailoring the stability of the constituent phases, and transformation-induced ductility and work-hardening capability are successfully achieved. This not only sheds new insights on the development of HEAs with excellent combination of strength and ductility, but also has great implications on overcoming the long-standing strength-ductility tradeoff of metallic materials in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app