Add like
Add dislike
Add to saved papers

Origin of the Excited-State Absorption Spectrum of Polythiophene.

The excited states of conjugated polymers play a central role in their applications in organic solar photovoltaics. The delocalized excited states of conjugated polymers are short-lived (τ < 40 fs) but are imperative in the photovoltaic properties of these materials. Photoexcitation of poly(3-hexylthiophene) (P3HT) induces an excited-state absorption band, but the transitions that are involved are not well understood. In this work, calculations have been performed on P3HT analogues using nonlinear response time-dependent density functional theory to show that an increase in the oligomer length correlates with the dominance of the S1 → S3 transition. Furthermore, the predicted transition energy shows an excellent agreement with experiment. The calculations also yielded results on intramolecular charge transfer in P3HT due to the S1 → S3 transition, providing insight into the mechanism of exciton dissociation to form charge carriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app