Add like
Add dislike
Add to saved papers

Tri-Needle Coaxial Electrospray Engineering of Magnetic Polymer Yolk-Shell Particles Possessing Dual-Imaging Modality, Multiagent Compartments, and Trigger Release Potential.

Particulate platforms capable of delivering multiple actives as well as providing diagnostic features have gained considerable interest over the last few years. In this study, magnetic polymer yolk-shell particles (YSPs) were engineered using a tri-needle coaxial electrospraying technique enabling dual-mode (ultrasonic and magnetic resonance) imaging capability with specific multidrug compartments via an advanced single-step encapsulation process. YSPs comprised magnetic Fe3 O4 nanoparticles (MNPs) embedded in the polymeric shell, an interfacing oil layer, and a polymeric core (i.e., composite shell-oil interface-polymeric core). The frequency of the ultrasound backscatter signal was modulated through YSP loading dosage, and both T1 - and T2 -weighted magnetic resonance imaging signal intensities were shown to decrease with increasing MNP content (YSP outer shell). Three fluorescent dyes (selected as model probes with varying hydrophobicities) were coencapsulated separately to confirm the YSP structure. Probe release profiles were tuned by varying power or frequency of an external auxiliary magnetic field (AMF, 0.7 mT (LAMF) or 1.4 mT (HAMF)). In addition, an "inversion" phenomenon for the AMF-enhanced drug release process was studied and is reported. A low YSP cytotoxicity (5 mg/mL) and biocompatibility (murine, L929) was confirmed. In summary, magnetic YSPs demonstrate timely potential as multifunctional theranostic agents for dual-imaging modality and magnetically controlled coactive delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app