Add like
Add dislike
Add to saved papers

Anti-rheumatic drug iguratimod protects against cancer-induced bone pain and bone destruction in a rat model.

The bone is one of the most common sites of metastasis in patients with cancer. Current treatments for bone metastases include bisphosphonates, denosumab, non-steroidal anti-inflammatory drugs and analgesics, but each of them has certain limitations. Cytokines and mediators released from various cells in the bone microenvironment may drive a vicious cycle of osteolytic bone metastases. Iguratimod (T-614), a novel disease-modifying anti-rheumatic drug, has demonstrated therapeutic effects by suppressing the production of inflammatory cytokines in rats and patients with rheumatoid arthritis. Therefore, the current study evaluated the hypothesis that iguratimod may protect against cancer-induced bone pain and bone metastasis in a rat model. For this purpose, rats inoculated with Walker 256 cells were treated with iguratimod from days 11-17 post-surgery. Mechanical paw withdrawal thresholds and expression levels of phosphorylated extracellular signal-related kinase (pERK) and c-Fos in the spinal cord were investigated to detect changes in bone pain. Bone destruction levels were detected using X-rays, hematoxylin and eosin and tartrate-resistant acid phosphatase staining. The results revealed that mechanical paw withdrawal thresholds and the expression levels of pERK and c-Fos declined in a dose-dependent manner in rats treated with iguratimod, and bone destruction severity was also reduced. These findings may provide important new insights into the treatment of bone metastasis symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app