JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Direct measurement of optical trapping force gradient on polystyrene microspheres using a carbon nanotube mechanical resonator.

Scientific Reports 2017 June 7
Optical tweezers based on optical radiation pressure are widely used to manipulate nanoscale to microscale particles. This study demonstrates direct measurement of the optical force gradient distribution acting on a polystyrene (PS) microsphere using a carbon nanotube (CNT) mechanical resonator, where a PS microsphere with 3 μm diameter is welded at the CNT tip using laser heating. With the CNT mechanical resonator with PS microsphere, we measured the distribution of optical force gradient with resolution near the thermal noise limit of 0.02 pN/μm in vacuum, in which condition enables us to high accuracy measurement using the CNT mechanical resonator because of reduced mechanical damping from surrounding fluid. The obtained force gradient and the force gradient distribution agree well with theoretical values calculated using Lorenz-Mie theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app