Add like
Add dislike
Add to saved papers

Tumor Metabolic Features Identified by 18 F-FDG PET Correlate with Gene Networks of Immune Cell Microenvironment in Head and Neck Cancer.

The importance of18 F-FDG PET in imaging head and neck squamous cell carcinoma (HNSCC) has grown in recent decades. Because PET has prognostic values, and provides functional and molecular information in HNSCC, the genetic and biologic backgrounds associated with PET parameters are of great interest. Here, as a systems biology approach, we aimed to investigate gene networks associated with tumor metabolism and their biologic function using RNA sequence and18 F-FDG PET data. Methods: Using RNA sequence data of HNSCC downloaded from The Cancer Genome Atlas data portal, we constructed a gene coexpression network. PET parameters including lesion-to-blood-pool ratio, metabolic tumor volume, and tumor lesion glycolysis were calculated. The Pearson correlation test was performed between module eigengene-the first principal component of modules' expression profile-and the PET parameters. The significantly correlated module was functionally annotated with gene ontology terms, and its hub genes were identified. Survival analysis of the significantly correlated module was performed. Results: We identified 9 coexpression network modules from the preprocessed RNA sequence data. A network module was significantly correlated with total lesion glycolysis as well as maximum and mean18 F-FDG uptake. The expression profiles of hub genes of the network were inversely correlated with18 F-FDG uptake. The significantly annotated gene ontology terms of the module were associated with immune cell activation and aggregation. The module demonstrated significant association with overall survival, and the group with higher module eigengene showed better survival than the other groups with statistical significance ( P = 0.022). Conclusion: We showed that a gene network that accounts for immune cell microenvironment was associated with18 F-FDG uptake as well as prognosis in HNSCC. Our result supports the idea that competition for glucose between cancer cell and immune cell plays an important role in cancer progression associated with hypermetabolic features. In the future, PET parameters could be used as a surrogate marker of HNSCC for estimating molecular status of immune cell microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app