Evaluation Study
Journal Article
Add like
Add dislike
Add to saved papers

Aerosol Delivery Through Adult High Flow Nasal Cannula With Heliox and Oxygen.

Respiratory Care 2017 September
BACKGROUND: Heliox (helium-oxygen mixture) has been shown to reduce turbulence and improve aerosol delivery in a range of clinical settings. We questioned whether heliox as compared with oxygen via high-flow nasal cannula (HFNC) would affect aerosol delivery. We hypothesized that heliox would have a significant effect on aerosol delivery as compared with oxygen with both quiet and distressed breathing patterns.

METHODS: A vibrating mesh nebulizer was placed at the inlet of a humidifier via HFNC with small adult cannula distal to the heated-wire circuit with prongs placed into simulated nares with a T-shaped trap and absolute filter connected to a breath simulator set to adult quiet and distressed breathing parameters. Albuterol sulfate (0.083% 2.5 mg/3 mL) was aerosolized with heliox (80:20) and oxygen (100%) at 10, 30, and 50 L/min. Drug eluted from the filter was assayed with UV spectrophotometry (276 nm). Descriptive statistics, Kruskal-Wallis test, and Mann-Whitney U test were used for data analysis. P < .05 was considered statistically significant.

RESULTS: Increasing flows with heliox and oxygen significantly decreased percentage inhaled dose (inhaled dose) of aerosol with a quiet breathing pattern ( P = .02 and P = .030, respectively). In contrast, with a distressed breathing pattern, inhaled dose at 10 L/min was lower than at 30 and 50 L/min ( P = .009 and P = .01, respectively) with both oxygen and heliox ( P = .009 and P = .009, respectively). Despite a trend to higher aerosol deposition with heliox versus oxygen, the differences were not significant.

CONCLUSIONS: With a distressed breathing pattern, aerosol delivery was greater at 30 and 50 L/min than with a quiet breathing pattern. Trends toward higher inhaled dose with heliox during HFNC were not significant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app