Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Gender-specific expression of ATP-binding cassette (Abc) transporters and cytoprotective genes in mouse choroid plexus.

Toxicology 2017 July 2
The choroid plexus (CP) and blood-brain barrier (BBB) control the movement of several drugs and endogenous compounds between the brain and systemic circulation. The multidrug resistance associated protein (Mrp) efflux transporters form part of these barriers. Several Mrp transporters are positively regulated by the transcription factor nuclear factor erythroid-2-related factor (Nrf2) in liver. The Mrps, Nrf2 and Nrf2-dependent genes are cytoprotective and our aim was to examine basal gender differences in expression of Mrp transporters, Nrf2 and Nrf2-dependent genes (Nqo1 and Ho-1) in the brain-barriers. Previous studies have shown higher expression of Mrp1, Mrp2 and Mrp4 in female mouse liver and kidney. We hypothesized that similar renal/hepatic gender-specific patterns are present in the brain-barrier epithelia interfaces. qPCR and immunoblot analyses showed that Mrp4, Ho-1 and Nqo1 expression was higher in female CP. Mrp1, Mrp2 and Nrf2 expression in the CP had no gender pattern. Female Mrp1, Mrp2 and Mrp4 mouse brain expressions in remaining brain areas, excluding CP, were higher than male. Functional analysis of Mrp4 in CP revealed active accumulation of the Mrp4 model substrate fluo-cAMP. WT female CP had 10-fold higher accumulation in the vascular spaces than males and 60% higher than Mrp4-/- females. Probenecid blocked all transport. Methotrexate did as well except in Mrp4-/- females where it had no effect, suggesting compensatory induction of transport occurred in Mrp4-/- . Collectively, our findings indicate significant gender differences in expression of Mrp transporters and cytoprotective genes in the CP and BBB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app