Add like
Add dislike
Add to saved papers

Pharmacological characterization of a novel potent, selective, and orally active phosphodiesterase 2A inhibitor, PDM-631.

Recently, we identified a novel phosphodiesterase 2A (PDE2A) inhibitor, PDM-631 ((S)-3-cyclopropyl-6-methyl-1-(1-(4-(trifluoromethoxy)phenyl)propan-2-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one). PDM-631 showed potent inhibitory activities for human and rat PDE2A with IC50 values of 1.5 and 4.2nM, respectively and more than 2000-fold selectivity against other phosphodiesterases. In rat studies, PDM-631 showed oral bioavailability and good brain penetration, and increased the cGMP levels in the cortex. These data indicate that PDM-631 is a potent, selective, orally active, and brain-penetrable PDE2A inhibitor. In behavioral studies using rat models, PDM-631 (3-30mg/kg) resulted in better discrimination between a novel object and a familiar one 48h after the acquisition phase in the novel object recognition test, thus indicating that PDM-631 increased object recognition memory. In contrast, PDM-631 did not attenuate the conditioned avoidance response at the same dose range (3-30mg/kg) in rats, indicating that PDM-631 did not show an antipsychotic-like effect. In test for extrapyramidal side effect, PDM-631 had no effect on catalepsy at the effective doses (10 and 30mg/kg) in the novel object recognition test, while haloperidol caused catalepsy at a dose of 3mg/kg. Our results suggest that PDM-631 is a good pharmacological tool that can be used to investigate the role of PDE2A and may have therapeutic potential for the treatment of cognitive impairments associated with schizophrenia and neurodegenerative disorders, without any extrapyramidal side effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app