Add like
Add dislike
Add to saved papers

miRNA-186 inhibits prostate cancer cell proliferation and tumor growth by targeting YY1 and CDK6.

microRNAs (miRNAs) are known to be important in tumor initiation and progression. Recent studies have demonstrated that miR-186 is critical in several types of cancer, including human non-small cell lung cancer, bladder cancer and pancreatic ductal adenocarcinoma. However, the functions of miR-186 in prostate cancer (PCa) are still unclear. In the present study, downregulation of miR-186 in PCa cells was detected when compared with the normal prostate cell line. When miR-186 overexpressed in PCa cells, cell proliferation in vitro was evidently inhibited as shown using cell counting kit-8 assays and cell-cycle analysis, and tumor growth in vivo was decreased as shown by tumor growth assays in nude mice. Furthermore, through bioinformatics prediction and biochemical analyses, Yin Yang 1 (YY1) and cyclin-dependent kinase 6 (CDK6) have been proven to act as direct targets of miR-186. These results indicate that miR-186 is a negative regulator in PCa by inhibiting PCa cell proliferation via targeting YY1 and CDK6.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app