Add like
Add dislike
Add to saved papers

Performance analysis of a new hypersonic vitrector system.

PURPOSE: To evaluate porcine vitreous flow and water flow rates in a new prototype hypersonic vitrectomy system compared to currently available pneumatic guillotine vitrectors (GVs) systems.

METHODS: Two vitrectors were tested, a prototype, ultrasound-powered, hypersonic vitrector (HV) and a GV. Porcine vitreous was obtained within 12 to 24 h of sacrifice and kept at 4°C. A vial of vitreous or water was placed on a precision balance and its weight measured before and after the use of each vitrector. Test parameters included changes in aspiration levels, vitrector gauge, cut rates for GVs, % ultrasound (US) power for HVs, and port size for HVs. Data was analysed using linear regression and t-tests.

RESULTS: There was no difference in the total average mean water flow between the 25-gauge GV and the 25-gauge HV (t-test: P = 0.363); however, 25-gauge GV was superior (t-test: P < 0.001) in vitreous flow. The 23-gauge GV was only more efficient in water and vitreous removal than 23-gauge HV needle-1 (Port 0.0055) (t-test: P < 0.001). For HV, wall thickness and gauge had no effect on flow rates. Water and vitreous flows showed a direct correlation with increasing aspiration levels and % US power (p<0.05).

CONCLUSIONS: The HV produced consistent water and vitreous flow rates across the range of US power and aspiration levels tested. Hypersonic vitrectomy may be a promising new alternative to the currently available guillotine-based technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app