Add like
Add dislike
Add to saved papers

The specific host plant DNA detection suggests a potential migration of Apolygus lucorum from cotton to mungbean fields.

The polyphagous mirid bug Apolygus lucorum (Heteroptera: Miridae) has more than 200 species of host plants and is an insect pest of important agricultural crops, including cotton (Gossypium hirsutum) and mungbean (Vigna radiata). Previous field trials have shown that A. lucorum adults prefer mungbean to cotton plants, indicating the considerable potential of mungbean as a trap crop in cotton fields. However, direct evidence supporting the migration of A. lucorum adults from cotton to mungbean is lacking. We developed a DNA-based polymerase chain reaction (PCR) approach to reveal the movement of A. lucorum between neighboring mungbean and cotton fields. Two pairs of PCR primers specific to cotton or mungbean were designed to target the trnL-trnF region of chloroplast DNA. Significant differences in the detectability half-life (DS50) were observed between these two host plants, and the mean for cotton (8.26 h) was approximately two times longer than that of mungbean (4.38 h), requiring weighted mean calculations to compare the detectability of plant DNA in the guts of field-collected bugs. In field trials, cotton DNA was detected in the guts of the adult A. lucorum individuals collected in mungbean plots, and the cotton DNA detection rate decreased successively from 5 to 15 m away from the mungbean-cotton midline. In addition to the specific detection of cotton- and mungbean-fed bugs, both cotton and mungbean DNA were simultaneously detected within the guts of single individuals caught from mungbean fields. This study successfully established a tool for molecular gut-content analyses and clearly demonstrated the movement of A. lucorum adults from cotton to neighboring mungbean fields, providing new insights into understanding the feeding characteristics and landscape-level ecology of A. lucorum under natural conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app