Add like
Add dislike
Add to saved papers

Strongly Luminescent Cyclometalated Gold(III) Complexes Supported by Bidentate Ligands Displaying Intermolecular Interactions and Tunable Emission Energy.

A series of charge-neutral AuIII complexes, which comprise a dicarbanionic C-deprotonated biphenyl ligand and bidentate ancillary ligands ([Au(C^C)(L^X)]; L^X=β-diketonate and relatives (O^O), quinolinolate and relatives (N^O), and diphosphino (P^P) ligands), were prepared. All the complexes are emissive in degassed CH2 Cl2 solutions and in thin-film samples with Φem up to 18 and 35 %, respectively, except for 5 and 6, which bear (N^O)-type ancillary ligands. Variation of the electronic characteristics of the β-diketonate ancillary ligand was demonstrated to be a viable route for tuning the emission color from blue-green (peak λem at ca. 466 nm for 1 and 2; 501 nm for 4 a and 4 b) to orange (peak λem at 585 nm for 3), in contrast to the common observations that the ancillary ligand has a negligible effect on the excited-state energy of the AuIII complexes reported in the literature. DFT/time-dependent (TD) DFT calculations revealed that the energies of the3 ππ*(C^C) and the3 ILCT(O^O) excited states (ILCT=intraligand charge transfer) switch in order on going from O^O=acetylacetonate (acac) to aryl-substituted β-diketonate ligands. Solution-processed and vacuum-deposited organic light-emitting diode (OLED) devices of selected complexes were prepared. The vacuum-deposited OLED fabricated with 2 displays a sky-blue emission with a maximum external quantum efficiency (EQE) of 6.71 % and CIE coordinates of (0.22, 0.40). The crystal structures of 7 and 9 reveal short intermolecular AuIII ⋅⋅⋅AuIII contacts, with intermetal distances of 3.408 and 3.453 Å, respectively. DFT/TDDFT calculations were performed on 7 and 9 to account for the noncovalent interactions. Solid samples of 1, 3, and 9 exhibit excimeric emission at room temperature, which is rarely reported in AuIII complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app