Add like
Add dislike
Add to saved papers

Subtype-specific prognostic impact of different immune signatures in node-negative breast cancer.

BACKGROUND: The role of different subtypes of immune cells is still a matter of debate.

METHODS: We compared the prognostic relevance for metastasis-free survival (MFS) of a B-cell signature (BS), a T-cell signature (TS), and an immune checkpoint signature (CPS) in node-negative breast cancer (BC) using mRNA expression. Microarray-based gene-expression data were analyzed in six previously published cohorts of node-negative breast cancer patients not treated with adjuvant therapy (n = 824). The prognostic relevance of the individual immune markers was assessed using univariate analysis. The amount of independent prognostic information provided by each immune signature was then compared using a likelihood ratio statistic in the whole cohort as well as in different molecular subtypes.

RESULTS: Univariate Cox regression in the whole cohort revealed prognostic significance of CD4 (HR 0.66, CI 0.50-0.87, p = 0.004), CXCL13 (HR 0.86, CI 0.81-0.92, p < 0.001), CD20 (HR 0.76, CI 0.64-0.89, p = 0.001), IgκC (HR 0.81, CI 0.75-0.88, p < 0.001), and CTLA-4 (HR 0.67, CI 0.46-0.97, p = 0.032). Multivariate analyses of the immune signatures showed that both TS (p < 0.001) and BS (p < 0.001) showed a significant prognostic information in the whole cohort. After accounting for clinical-pathological variables, TS (p < 0.001), BS (p < 0.05), and CPS (p < 0.05) had an independent effect for MFS. In subgroup analyses, the prognostic effect of immune cells was most pronounced in HER2+ BC: BS as well as TS showed a strong association with MFS when included first in the model (p < 0.001).

CONCLUSION: Immune signatures provide subtype-specific additional prognostic information over clinical-pathological variables in node-negative breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app