Add like
Add dislike
Add to saved papers

Suppression of inflammation by the rhizome of Anemarrhena asphodeloides via regulation of nuclear factor-κB and p38 signal transduction pathways in macrophages.

The rhizome of Anemarrhena asphodeloides Bunge (A. asphodeloides) has been used as a traditional East Asian medicine for the treatment of various types of inflammatory disease. However, to the best of our knowledge, there have been no systemic studies regarding the molecular mechanisms of action of the A. asphodeloides rhizome anti-inflammatory effects. The aim of the present study was to elucidate the anti-inflammatory effects and underlying mechanism of action of ethanol extracts of the rhizome of A. asphodeloides (EAA) in murine macrophages. Non-cytotoxic concentrations of EAA (10-100 µg/ml) significantly decreased the production of NO and interleukin (IL)-6 in lipopolysaccharide (LPS)-stimulated macrophages, while the production of tumor necrosis factor-α was not regulated by EAA. EAA-mediated reduction of nitric oxide (NO) was due to reduced expression levels of inducible NO synthase (iNOS). Furthermore, protein expression levels of LPS-induced cyclooxygenase-2, another inflammatory enzyme, were alleviated in the presence of EAA. EAA-mediated reduction of those proinflammatory mediators was due to inhibition of nuclear factor-κB (NF-κB) and activator protein 1 transcriptional activities followed by the stabilization of inhibitor of κ Bα and inhibition of p38, respectively. These results indicate that EAA suppresses LPS-induced inflammatory responses by negatively regulating p38 and NF-κB, indicating that EAA is a candidate treatment for alleviating inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app