JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice.

Scientific Reports 2017 June 6
The p53 mutation and altered Pten expression are two most common genetic events in Hepatitis B virus (HBV) infection related hepatocellular carcinoma (HCC). To confirm the causative role of p53 and Pten somatic mutation in HCC development, we established CRISPR/Cas9-mediated somatic gene disruption via hydrodynamic tail vein injection, allowing for in vivo targeting p53 and Pten simultaneously in adult HBV transgenic mice. Here we demonstrated that the utility of this approach resulted in macroscopic liver tumors as early as 4 months' post injection and most tumors harbored both p53 and Pten loss-of-function alterations. Immunohistochemical (IHC) and histopathology analysis demonstrated that the tumors were positive for Glutamine synthetase (GS), a marker of HCC and accompanied with prominent lipid accumulation. The study here indicated that CRISPR/Cas9-mediated p53 and Pten somatic mutation accelerated hepatocarcinogenesis in adult HBV transgenic mice. This method also provides a fast and convenient system for generating mouse model of HCC with HBV infection characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app