Add like
Add dislike
Add to saved papers

Integration of vibrotactile frequency information beyond the mechanoreceptor channel and somatotopy.

Scientific Reports 2017 June 6
A wide variety of tactile sensations arise from the activation of several types of mechanoreceptor-afferent channels scattered all over the body, and their projections create a somatotopic map in the somatosensory cortex. Recent findings challenge the traditional view that tactile signals from different mechanoreceptor-channels/locations are independently processed in the brain, though the contribution of signal integration to perception remains obscure. Here we show that vibrotactile frequency perception is functionally enriched by signal integration across different mechanoreceptor channels and separate skin locations. When participants touched two sinusoidal vibrations of far-different frequency, which dominantly activated separate channels with the neighboring fingers or the different hand and judged the frequency of one vibration, the perceived frequency shifted toward the other (assimilation effect). Furthermore, when the participants judged the frequency of the pair as a whole, they consistently reported an intensity-based interpolation of the two vibrations (averaging effect). Both effects were similar in magnitude between the same and different hand conditions and significantly diminished by asynchronous presentation of the vibration pair. These findings indicate that human tactile processing is global and flexible in that it can estimate the ensemble property of a large-scale tactile event sensed by various receptors distributed over the body.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app