Add like
Add dislike
Add to saved papers

Unraveling the Morphological Evolution and Etching Kinetics of Porous Silicon Nanowires During Metal-Assisted Chemical Etching.

Many potential applications of porous silicon nanowires (SiNWs) fabricated with metal-assisted chemical etching are highly dependent on the precise control of morphology for device optimization. However, the effects of key etching parameters, such as the amount of deposited metal catalyst, HF-oxidant molar ratio (χ), and solvent concentration, on the morphology and etching kinetics of the SiNWs still have not been fully explored. Here, the changes in the nanostructure and etch rate of degenerately doped p-type silicon in a HF-H2O2-H2O etching system with electrolessly deposited silver catalyst are systematically investigated. The surface morphology is found to evolve from a microporous and cratered structure to a uniform array of SiNWs at sufficiently high χ values. The etch rates at the nanostructure base and tip are correlated with the primary etching induced by Ag and the secondary etching induced by metal ions and diffused holes, respectively. The H2O concentration also affects the χ window where SiNWs form and the etch rates, mainly by modulating the reactant dilution and diffusion rate. By controlling the secondary etching and reactant diffusion via χ and H2O concentration, respectively, the fabrication of highly doped SiNWs with independent control of porosity from length is successfully demonstrated, which can be potentially utilized to improve the performance of SiNW-based devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app