Add like
Add dislike
Add to saved papers

The vibrational properties of the bee-killer imidacloprid insecticide: A molecular description.

The chemical imidacloprid belongs to the neonicotinoids insecticide class, widely used for insect pest control mainly for crop protection. However, imidacloprid is a non-selective agrochemical to the insects and it is able to kill the most important pollinators, the bees. The high toxicity of imidacloprid requires controlled release and continuous monitoring. For this purpose, high performance liquid chromatography (HPLC) is usually employed; infrared and Raman spectroscopy, however, are simple and viable techniques that can be adapted to portable devices for field application. In this communication, state-of-the-art quantum level simulations were used to predict the infrared and Raman spectra of the most stable conformer of imidacloprid. Four molecular geometries were investigated in vacuum and solvated within the Density Functional Theory (DFT) approach employing the hybrid meta functional M06-2X and the hybrid functional B3LYP. The M062X/PCM model proved to be the best to predict structural features, while the values of harmonic vibrational frequencies were predicted more accurately using the B3LYP functional.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app