Add like
Add dislike
Add to saved papers

Coupling Reactions of Alkynyl Indoles and CO 2 by Bicyclic Guanidine: Origin of Catalytic Activity?

Density functional theory calculations were used to investigate the three possible modes of activation for the coupling of CO2 with alkynyl indoles in the presence of a guanidine base. The first of these mechanisms, involving electrophilic activation, was originally proposed by Skrydstrup et al. (Angew. Chem. Int. Ed. 2015, 54, 6682). The second mechanism involves the nucleophilic activation of CO2 . Both of these electrophilic and nucleophilic activation processes involve the formation of a guanidine-CO2 zwitterion adduct. We have proposed a third mechanism involving the bifunctional activation of the bicyclic guanidine catalyst, allowing for the simultaneous activation of the indole and CO2 by the catalyst. We demonstrated that a second molecule of catalyst is required to facilitate the final cyclization step. Based on the calculated turnover frequencies, our newly proposed bifunctional activation mechanism is the most plausible pathway for this reaction under these experimental conditions. Furthermore, we have shown that this bifunctional mode of activation is consistent with the experimental results. Thus, this guanidine-catalyzed reaction favors a specific-base catalyzed mechanism rather than the CO2 activation mechanism. We therefore believe that this bifunctional mechanism for the activation of bicyclic guanidine is typical of most CO2 coupling reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app