Add like
Add dislike
Add to saved papers

In vivo MR-angiography for the assessment of aortic aneurysms in an experimental mouse model on a clinical MRI scanner: Comparison with high-frequency ultrasound and histology.

BACKGROUND: MR-angiography currently represents one of the clinical reference-standards for the assessment of aortic-dimensions. For experimental research in mice, dedicated preclinical high-field MRI scanners are used in most studies. This type of MRI scanner is not available in most institutions. The aim of this study was to evaluate the potential of MR-angiography performed on a clinical MR scanner for the assessment of aortic aneurysms in an experimental mouse model, compared to a preclinical high-resolution ultrasound imaging system and histopathology.

METHODS: All in vivo MR imaging was performed with a clinical 3T MRI system (Philips Achieva) equipped with a clinical gradient system in combination with a single-loop surface-coil (47 mm). All MR sequences were based on clinically used sequences. For ultrasound, a dedicated preclinical high-resolution system (30 MHz linear transducer, Vevo770, VisualSonics) was used. All imaging was performed with an ApoE knockout mouse-model for aortic aneurysms. Histopathology was performed as reference-standard at all stages of aneurysm development.

RESULTS: MR-angiography on a clinical 3T system enabled the clear visualization of the aortic lumen and aneurysmal dilation at different stages of aneurysm development. A close correlation (R2 = 0.98; p < 0.001) with histological area measurements was found. Additionally, a good agreement between MR and ultrasound area measurements in systole (R2 = 0.91; p < 0.001) and diastole (R2 = 0.94; p < 0.001) were measured. Regarding interobserver reproducibility, MRI measurements yielded a smaller 95% confidence interval and a closer interreader correlation compared to ultrasound measurements (-0.37-0.46; R2 = 0.97 vs. -0.78-0.88; R2 = 0.87).

CONCLUSION: This study demonstrates that MR-angiography, performed on a clinical 3T MR scanner, enables the reliable detection and quantification of the aortic dilatation at different stages of aneurysm development in an experimental mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app