Add like
Add dislike
Add to saved papers

Therapeutic efficacy of folate receptor-targeted amphiphilic cyclodextrin nanoparticles as a novel vehicle for paclitaxel delivery in breast cancer.

PURPOSE: The aim of this study is to test folate-conjugated cyclodextrin nanoparticles (FCD-1 and FCD-2) as a vehicle for reducing toxicity and increasing the antitumor efficacy of paclitaxel especially for metastatic breast cancer.

METHODS: For the evaluation of PCX-loaded FCD nanoparticles, animal studies were realised in terms of survival rate, tumour size, weight change, metastazis and histopathological examination.

RESULTS: FCD-1 displayed significant advantages such as efficient targeting of folate receptor positive breast cancer cells and having considerably lower toxicity compared to that of Cremophor® . When loaded with paclitaxel, FCD-1 nanoparticles, which have smaller particle size, neutral zeta potential, high encapsulation efficiency and better loading capacity for controlled release, emerged as an effective formulation in terms of cytotoxicity and high cellular uptake. In an experimental breast cancer model, anticancer activity of these nanoparticles were compatible with that of paclitaxel in Cremophor® however repeated administrations of FCD-1 nanoparticles were better tolerated by the animals. These nanoparticles were able to localise in tumour site. Both paclitaxel-loaded FCD-1 and FCD-2 significantly reduced tumour burden while FCD-1 significantly improved the survival.

CONCLUSIONS: Folate-conjugated amphiphilic cyclodextrin nanoparticles can be considered as promising Cremophor® -free, low-toxicity and efficient active drug delivery systems for paclitaxel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app