Add like
Add dislike
Add to saved papers

Superconductivity Provides Access to the Chiral Magnetic Effect of an Unpaired Weyl Cone.

The massless fermions of a Weyl semimetal come in two species of opposite chirality, in two cones of the band structure. As a consequence, the current j induced in one Weyl cone by a magnetic field B [the chiral magnetic effect (CME)] is canceled in equilibrium by an opposite current in the other cone. Here, we show that superconductivity offers a way to avoid this cancellation, by means of a flux bias that gaps out a Weyl cone jointly with its particle-hole conjugate. The remaining gapless Weyl cone and its particle-hole conjugate represent a single fermionic species, with renormalized charge e^{*} and a single chirality ± set by the sign of the flux bias. As a consequence, the CME is no longer canceled in equilibrium but appears as a supercurrent response ∂j/∂B=±(e^{*}e/h^{2})μ along the magnetic field at chemical potential μ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app