Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Crystal structure of the active form of native human thymidylate synthase in the absence of bound substrates.

Human thymidylate synthase (hTS) provides the sole de novo intracellular source of thymidine 5'-monophosphate (dTMP). hTS is required for DNA replication prior to cell division, making it an attractive target for anticancer chemotherapy and drug discovery. hTS binds 2'-deoxyuridine 5'-monophosphate (dUMP) and the folate co-substrate N5 ,N10 -methylenetetrahydrofolate (meTHF) in a pocket near the catalytic residue Cys195. The catalytic loop, which is composed of amino-acid residues 181-197, can adopt two distinct conformations related by a 180° rotation. In the active conformation Cys195 is close to the active site, while in the inactive conformation it is rotated and Cys195 is too distant from the active site for catalysis. Several hTS structures, either native or engineered, have been solved in the active conformation in complex with ligands or inhibitors and at different salt concentrations. However, apo hTS structures have been solved in an inactive conformation in high-salt and low-salt conditions (PDB entries 1ypv, 4h1i, 4gyh, 3egy and 3ehi). Here, the structure of apo hTS crystallized in the active form with sulfate ions coordinated by the arginine residue that binds dUMP is reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app