Add like
Add dislike
Add to saved papers

Exploiting a host-commensal interaction to promote intestinal barrier function and enteric pathogen tolerance.

Science Immunology 2016 September
Commensal intestinal bacteria can prevent pathogenic infection; however, limited knowledge of the mechanisms by which individual bacterial species contribute to pathogen resistance has restricted their potential for therapeutic application. Here, we examined how colonization of mice with a human commensal Enterococcus faecium protects against enteric infections. We show that E. faecium improves host intestinal epithelial defense programs to limit Salmonella enterica serotype Typhimurium pathogenesis in vivo in multiple models of susceptibility. E. faecium protection is mediated by a unique peptidoglycan hydrolase, SagA, and requires epithelial expression of pattern recognition receptor components and antimicrobial peptides. Ectopic expression of SagA in non-protective and probiotic bacteria is sufficient to enhance intestinal barrier function and confer resistance against S. Typhimurium and Clostridium difficile pathogenesis. These studies demonstrate that specific factors from commensal bacteria can be used to improve host barrier function and limit the pathogenesis of distinct enteric infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app