Add like
Add dislike
Add to saved papers

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images.

BACKGROUND: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation is a need.

MATERIALS AND METHODS: In order to segment MS lesions, a method based on learning kernels has been proposed. The proposed method has three main steps namely; pre-processing, sub-region extraction and segmentation. The segmentation is performed by a kernel. This kernel is trained using a modified version of a special type of Artificial Neural Networks (ANN) called Massive Training ANN (MTANN). The kernel incorporates surrounding pixel information as features for classification of middle pixel of kernel. The materials of this study include a part of MICCAI 2008 MS lesion segmentation grand challenge data-set.

RESULTS: Both qualitative and quantitative results show promising results. Similarity index of 70 percent in some cases is considered convincing. These results are obtained from information of only one MRI channel rather than multi-channel MRIs.

CONCLUSION: This study shows the potential of surrounding pixel information to be incorporated in segmentation by learning kernels. The performance of proposed method will be improved using a special pre-processing pipeline and also a post-processing step for reducing false positives/negatives. An important advantage of proposed model is that it uses just FLAIR MRI that reduces computational time and brings comfort to patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app