Add like
Add dislike
Add to saved papers

Resveratrol attenuates triglyceride accumulation associated with upregulation of Sirt1 and lipoprotein lipase in 3T3-L1 adipocytes.

AIM: We aimed to investigate the effect of resveratrol (Rsv) on expression of genes regulating triglyceride (TG) accumulation and consumption in differentiated 3T3-L1 preadipocytes.

METHODS: 3T3-L1 preadipocytes were cultured in DMEM supplemented with 10% fetal calf serum. Upon reaching confluence, cells were induced to differentiate for 4 days, cultured for 10 days for TG accumulation, and then incubated with Rsv (0, 25 or 50 μM) for 3 days. TG accumulation was analyzed by Oil Red-O staining. To understand how Rsv regulates TG accumulation and consumption, changes in gene and protein expressions of several factors associated with free fatty acid (FFA) uptake and β-oxidation were investigated by real-time RT-PCR and Western blot. For further elucidation of underlying mechanisms, we also investigated gene expressions using Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) siRNA.

RESULTS: Rsv dose dependently enhanced Sirt1 expression and reduced TG accumulation. Rsv-induced reduction of TG accumulation was abolished by inhibition of Sirt1 and PGC1α. Rsv also enhanced expressions of genes involved in FFA uptake [peroxisome proliferator-activated receptor-gamma (PPARγ) and lipoprotein lipase] and in β-oxidation regulation [PGC1-α and carnitine palmitoyl-transferase 1a (CPT1a)]. All these effects were abolished by Sirt1 inhibition.

CONCLUSION: The present results suggest that Rsv may augment synthesis and oxidation of fatty acid, and possibly increases energy utilization efficiency in adipocytes through activation of Sirt1. The present study may provide meaningful evidence supporting the efficacy of Rsv in the treatment of obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app