Add like
Add dislike
Add to saved papers

Does prediction error drive one-shot declarative learning?

The role of prediction error (PE) in driving learning is well-established in fields such as classical and instrumental conditioning, reward learning and procedural memory; however, its role in human one-shot declarative encoding is less clear. According to one recent hypothesis, PE reflects the divergence between two probability distributions: one reflecting the prior probability (from previous experiences) and the other reflecting the sensory evidence (from the current experience). Assuming unimodal probability distributions, PE can be manipulated in three ways: (1) the distance between the mode of the prior and evidence, (2) the precision of the prior, and (3) the precision of the evidence. We tested these three manipulations across five experiments, in terms of peoples' ability to encode a single presentation of a scene-item pairing as a function of previous exposures to that scene and/or item. Memory was probed by presenting the scene together with three choices for the previously paired item, in which the two foil items were from other pairings within the same condition as the target item. In Experiment 1, we manipulated the evidence to be either consistent or inconsistent with prior expectations, predicting PE to be larger, and hence memory better, when the new pairing was inconsistent. In Experiments 2a-c, we manipulated the precision of the priors, predicting better memory for a new pairing when the (inconsistent) priors were more precise. In Experiment 3, we manipulated both visual noise and prior exposure for unfamiliar faces, before pairing them with scenes, predicting better memory when the sensory evidence was more precise. In all experiments, the PE hypotheses were supported. We discuss alternative explanations of individual experiments, and conclude the Predictive Interactive Multiple Memory Signals (PIMMS) framework provides the most parsimonious account of the full pattern of results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app