Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Assessment of dyspnea and dynamic hyperinflation in male patients with chronic obstructive pulmonary disease during a six minute walk test and an incremental treadmill cardiorespiratory exercise test.

The six minute walk test (6MWT) is a standardized test that provides information on exercise capacity in patients with COPD. It is considered a submaximal test in opposition to incremental cardiopulmonary exercise tests (CPET) that provide valuable information on all the systems involved in exercise.

OBJECTIVES: 1. To compare the perceptive, physiological responses and degree of dynamic hyperinflation during two exercise tests: the 6MWT and the incremental CPET on a treadmill. 2. To evaluate how dyspnea is related to dynamic hyperinflation (DH) and other functional parameters in both tests.

METHODS: 29 stable COPD male patients, age 68±5.8 years, mean post-bronchodilator FEV1 57±11%, were recruited. To evaluate dynamic hyperinflation, inspiratory capacity (IC) was measured at rest and upon completing each one of the tests. At the same time, perceived dyspnea and leg discomfort were rated on specific modified Borg scales.

RESULTS: The mean walk distance in 6MWT was 494±88m. The Borg scale rating for shortness of breath upon completing the test was 4.7±2, whilst 2.9±2 for leg discomfort. IC changed from 2.53±0.63l before to 2.34±0.60l after completion of the test. In the treadmill CPET, maximal oxygen consumption (V˙O2 max) was 21.8±5mL/kg/min with 6.6±2 dyspnea and 4.3±2 leg discomfort on Borg scales. IC changed from 2.17±0.53l to 1.20±0.43l.

CONCLUSIONS: Dynamic hyperinflation occurs in male COPD patients during submaximal exercise such as the 6MWT. This phenomenon is more pronounced after incremental CPET on a treadmill. Despite being dyspnea the dominant limiting symptom for both tests, we observed different physiological responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app