JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Development and validation of an ultra-performance liquid chromatography-tandem mass spectrometry method for quantification of SR1001, an inverse agonist of retinoid-related orphan receptors, and its application to pharmacokinetic studies in streptozotocin-induced diabetic mice.

Retinoic acid receptor-related orphan receptors (RORs) play critical roles in the onset and progression of type I diabetes, an autoimmune disease characterized by the destruction of pancreatic β-cells. SR1001, an ROR inverse agonist, has been proven to be an effective diabetes treatment in the non-obese diabetic (NOD) mouse model. However, optimization of this treatment is challenging because knowledge of SR1001 pharmacokinetic (PK) behaviors in type I diabetic animals is limited. The aim of our study was to develop and validate a specific and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to measure the concentrations of SR1001 in plasma and biological samples. Using the developed UPLC-MS/MS method, SR1001 linearity ranges in biological matrices were determined to be 5-1000ng/mL, with correlation coefficients of >0.99. The limit of detection (LOD) and limit of quantification (LOQ) values of SR1001 were 1 and 5ng/mL, respectively. And the intra-day and inter-day variances were less than 10%, and accuracy was within 90%-110%. The extraction recoveries of SR1001 were ≥80%, and no significant matrix effect was observed. Using the validated UPLC-MS/MS method, levels of SR1001 in plasma and six major organs (heart, liver, spleen, lung, kidney, and brain) were determined in streptozotocin (STZ) -induced diabetic mice. The PK parameters of SR1001 were also calculated. The SR1001 drug concentration-time curves for organs and plasma showed similar trends, and the elimination half-lives of SR1001 in diabetic mice were about 12h. SR1001 was highly bound to plasma protein, resulting in a much higher maximum concentration (Cmax =144394ng/mL) and area under the concentration-time curve (AUC0-t =2728258ng/mL*h), but a low tissue/plasma partition coefficient (Kp ) value of <0.3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app