JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Assessing dynamic functional connectivity in heterogeneous samples.

NeuroImage 2017 August 16
Several methods have been developed to measure dynamic functional connectivity (dFC) in fMRI data. These methods are often based on a sliding-window analysis, which aims to capture how the brain's functional organization varies over the course of a scan. The aim of many studies is to compare dFC across groups, such as younger versus older people. However, spurious group differences in measured dFC may be caused by other sources of heterogeneity between people. For example, the shape of the haemodynamic response function (HRF) and levels of measurement noise have been found to vary with age. We use a generic simulation framework for fMRI data to investigate the effect of such heterogeneity on estimates of dFC. Our findings show that, despite no differences in true dFC, individual differences in measured dFC can result from other (non-dynamic) features of the data, such as differences in neural autocorrelation, HRF shape, connectivity strength and measurement noise. We also find that common dFC methods such as k-means and multilayer modularity approaches can detect spurious group differences in dynamic connectivity due to inappropriate setting of their hyperparameters. fMRI studies therefore need to consider alternative sources of heterogeneity across individuals before concluding differences in dFC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app