Add like
Add dislike
Add to saved papers

In-vitro activity of several antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) isolates expressing aminoglycoside-modifying enzymes: potency of plazomicin alone and in combination with other agents.

This study investigated the in-vitro activity of clinically relevant aminoglycosides and new antimicrobial agents-plazomicin, ceftobiprole and dalbavancin-against 55 methicillin-resistant Staphylococcus aureus (MRSA) isolates producing aminoglycoside-modifying enzymes (AMEs). The checkerboard method was used to assess synergism between plazomicin and four antibiotics (fosfomycin, ceftobiprole, cefoxitin and meropenem), and time-kill assays were performed for the most active combinations. Among the aminoglycosides tested, plazomicin was the most active agent against MRSA, with >90% of isolates being inhibited at a minimum inhibitory concentration (MIC) of ≤1 mg/L. MIC50 and MIC90 values for ceftobiprole and dalbavancin were 2 and 4 mg/L, and 0.125 and 0.125 mg/L, respectively. The most prevalent AME gene was aac(6')Ie-aph(2″)Ia (87.3%), followed by ant(4')Ia (52.7%) and aph(3')IIIa (52.7%). Plazomicin activity was not affected by the type or number of enzymes detected. In checkerboard and time-kill assays, indifference was the most common result achieved for the antibiotic combinations. Notably, no antagonism was observed with any combination tested. Overall, plazomicin in combination with meropenem had the highest synergistic effect, demonstrating synergy against seven isolates in the checkerboard assay and three isolates in time-kill curves. In conclusion, plazomicin showed potent activity against aminoglycoside-resistant MRSA isolates, regardless of the number and type of AMEs present. These findings indicate the potential utility of plazomicin in combination with meropenem for the treatment of MRSA infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app