Add like
Add dislike
Add to saved papers

Molecular inversion probes equipped with discontinuous rolling cycle amplification for targeting nucleotide variants: Determining SMN1 and SMN2 genes in diagnosis of spinal muscular atrophy.

The novel techniques of molecular inversion probes (MIPs) combined with discontinuous rolling cycle amplification (DRCA) was developed for determination of the multi-nucleotide variants at single base. The different-length MIPs, a padlock-probe based technology, are designed to simultaneously recognize the identical nucleotide variants. After ligation and DRCA, the different-length genetic products representing the certain genotypes could be simply determined by the short-end capillary electrophoresis (CE) method. By using MIPs-DRCA method, the various gene dosages of SMN1 and SMN2 genes in homologous or heterologous subjects were successfully quantified for diagnosis of spinal muscular atrophy (SMA). The length of the MIP for SMN1 gene was 106 bp, and for SMN2 gene was 86 bp. After method optimization, the MIP products of SMN1 and SMN2 were well separated with the resolution of 1.13 ± 0.17 (n = 3) within 10 min. There were total of 56 DNA blind samples analyzed by this strategy, including 38 wild types, 12 carriers and 6 SMA patients, and the data of gene dosages was corresponding to those analyzed by conformation sensitive CE and denatured high performance liquid chromatography (DHPLC) methods. This MIPs-DRCA method which could be applied to simultaneously genotype multi nucleotide variants at single base, such as K-ras gene, was very feasible for determination of genetic diseases in clinical.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app