Add like
Add dislike
Add to saved papers

Overexpression of apolipoprotein A-I alleviates endoplasmic reticulum stress in hepatocytes.

BACKGROUND: Abnormal lipid metabolism may contribute to an increase in endoplasmic reticulum (ER) stress, resulting in the pathogenesis of non-alcoholic steatohepatitis. Apolipoprotein A-I (apoA-I) accepts cellular free cholesterol and phospholipids transported by ATP-binding cassette transporter A1 to generate nascent high density lipoprotein particles. Previous studies have revealed that the overexpression of apoA-I alleviated hepatic lipid levels by modifying lipid transport. Here, we examined the effects of apoA-I overexpression on ER stress and genes involved in lipogenesis in both HepG2 cells and mouse hepatocytes.

METHODS: Human apoA-I was overexpressed in HepG2 hepatocytes, which were then treated with 2 μg/mL tunicamycin or 500 μM palmitic acid. Eight-week-old male apoA-I transgenic or C57BL/6 wild-type mice were intraperitoneally injected with 1 mg/kg body weight tunicamycin or with saline. At 48 h after injecting, blood and liver samples were collected.

RESULTS: The overexpression of apoA-I in the models above resulted in decreased protein levels of ER stress makers and lipogenic gene products, including sterol regulatory element binding protein 1, fatty acid synthase, and acetyl-CoA carboxylase 1. In addition, the cellular levels of triglycerides and free cholesterol also decreased. Some of gene products which are related to ER stress-associated apoptosis were also affected by apoA-I overexpression. These results suggested that apoA-I overexpression could reduce steatosis by decreasing lipid levels and by suppressing ER stress and lipogenesis in hepatocytes.

CONCLUSION: ApoA-I expression could significantly reduce hepatic ER stress and lipogenesis in hepatocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app