Add like
Add dislike
Add to saved papers

Telomerase reverse transcriptase genetically modified adipose tissue derived stem cells improves erectile dysfunction by inhibiting oxidative stress and enhancing proliferation in rat model.

Erectile dysfunction (ED) is considered to be incapable of obtaining or/and keeping a sufficient erection function to receive the satisfactory during the sexual intercourse. This study aims to investigate the effects of telomerase reverse transcriptase (hTERT) modified adipose tissue derived stem cells (ADSCs) autologously injected into cavernosa of the ED rats on erectile function. The ADSCs were isolated form the rat subcutaneous adipose tissue sample, and identified by examining the CD29 and CD44 molecule. The ED model was established by using 100μg/kg apomorphine (APO). The adenovirus expressing rat hTERT (Ade-hTERT vector) was established, and transfected into ADSCs and injected into ED rat model, respectively. Telomerase activity, cell growth, cell apoptosis were analyzed by using TRAP ELISA assay, CCK8 assay and flow cytometry assay, respectively. The trophic growth factors were examined by using enzyme-linked immunosorbent assay (ELISA). The mRNA and proteins were detected by using semi-quantitative PCR and western blot assay, respectively. Ade-hTERT vector was highly expressed in both ADSCs and ED rat mode. The hTERT expression enhanced the telomerase activity, inhibits cell apoptosis and enhances proliferation of ADSCs (P<0.05). hTERT expression triggers the secretory function of ADSCs and induces differentiative potential of ADSCs. hTERT expression inhibits apoptosis and increases eNOS and nNOS levels in older ED rats compared to the Ade-vector injected ED rats (P<0.05). In conclusion, the hTERT modification could enhance the ADSCs proliferation, and hTERT modified ADSCs could increase the anti-oxidative stress capacity in the ED rat model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app