JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Transient phase behavior of an elastomeric biomaterial applied to abdominal laparotomy closure.

Acta Biomaterialia 2017 August
UNLABELLED: Secure closure of the fascial layers after entry into the peritoneal cavity is crucial to prevent incisional hernia, yet appropriate purchase of the tissue can be challenging due to the proximity of the underlying protuberant bowel which may become punctured by the surgical needle or strangulated by the suture itself. Devices currently employed to provide visceral protection during abdominal closure, such as the metal malleable retractor and Glassman Visceral Retainer, are unable to provide complete protection as they must be removed prior to complete closure. A puncture resistant, biocompatible, and degradable matrix that can be left in place without need for removal would facilitate rapid and safe abdominal closure. We describe a novel elastomer (CC-DHA) that undergoes a rapid but controlled solid-to-liquid phase transition through the application of a destabilized carbonate cross-linked network. The elastomer is comprised of a polycarbonate cross-linked network of dihydroxyacetone, glycerol ethoxylate, and tri(ethylene glycol). The ketone functionality of the dihydroxyacetone facilitates hydrolytic cleavage of the carbonate linkages resulting in a rapidly degrading barrier that can be left in situ to facilitate abdominal fascial closure. Using a murine laparotomy model we demonstrated rapid dissolution and metabolism of the elastomer without evidence of toxicity or intraabdominal scarring. Furthermore, needle puncture and mechanical properties demonstrated the material to be both compliant and sufficiently puncture resistant. These unique characteristics make the biomaterial extraordinarily useful as a physical barrier to prevent inadvertent bowel injury during fascial closure, with the potential for wider application across a variety of medical and surgical applications.

STATEMENT OF SIGNIFICANCE: Fascial closure after abdominal surgery requires delicate maneuvers to prevent incisional hernia while minimizing risk for inadvertent bowel injury. We describe a novel biocompatible and biodegradable polycarbonate elastomer (CC-DHA) comprised of dihydroxyacetone, glycerol ethoxylate, and tri(ethylene glycol), for use as a rapidly degrading protective visceral barrier to aid in abdominal closure. Rapid polymer dissolution and metabolism was demonstrated using a murine laparotomy model without evidence of toxicity or intraabdominal scarring. Furthermore, mechanical studies showed the material to be sufficiently puncture resistant and compliant. Overall, this new biomaterial is extraordinary useful as a physical barrier to prevent inadvertent bowel injury during fascial closure, with the potential for wider application across a variety of medical and surgical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app